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Previous analyses of gas and particle motion around bubbles in fluidized beds 
have concentrated on idealized isolated bubbles. In this paper three non- 
idealities are considered using the theoretical models of Davidson and Murray. 
Gas flow patterns are derived for indented and elongated bubbles and for 
pairs of interacting bubbles. Cloud boundaries are predicted for these situations 
and some effects on gas-solid contacting are discussed. 

1. Introduction 
Fluidized beds in which the ratio of solids density to the density of the fluidizing 

fluid is large are characterized by rising fluid pockets or ‘bubbles’ analogous in 
many respects to large gas bubbles in liquids (Davidson & Harrison 1963). These 
bubbles give rise to most of the properties which have led to wide industrial 
application of gas-fluidized beds; the details of bubble behaviour are therefore of 
considerable theoretical and practical interest. Several models have been pro- 
posed to describe the motion of gas and particles around rising bubbles in 
fluidized beds (Davidson 1961; Jackson 19633; Murray 19653) but the applica- 
tions of these models have concentrated on idealized bubbles with spherical or 
circular boundaries. Real bubbles in fluidized beds seldom, if ever, have these 
idealized shapes. This paper presents analyses of the gas and particle motion 
around bubbles associated with particle wakes, elongated or flattened bubbles 
and interacting bubble pairs. For analytical simplicity the treatment is restricted 
to two-dimensional bubbles, in the expectation that the results are at  least 
qualitatively applicable to three-dimensional bubbles. 

In  the majority of gas-fluidized beds the bubble rise velocity U, exceeds the 
interstitial gas velocity u,; the gas within a bubble circulates to and from a 
limited region of the surrounding particulate phase, termed the ‘cloud’ (Rowe, 
Partridge & Lyalll964). The size of the cloud gives an indication of the effective- 
ness of contact between bubble gas and the fluidized particles (Rowe 1964). This 
paper therefore concentrates upon the manner in which bubble distortion and 
interaction affect the gas cloud. 

The first theoretical treatment of clouds was given by Davidson (1961), who 
assumed that the gas phase is incompressible, that the motion of the interstitial 
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gas relative to the particles obeys Darcy’s Law, and that the particulate phase 
may be treated macroscopically as an incompressible inviscid fluid. Both the 
gas flow in the dense phase and the particle motion can then be described by the 
equations of potential flow. The interstitial gas flow is obtained by superimposing 
the solids motion and the gas flow which would be present if the particles were 
fixed in their instantaneous positions. Thus 

Wa = W p  + WG,,, (1) 

where wG, w p  and wco are the complex potentials for gas, particles, and gas in the 
absence of solids movement respectively. 

Jackson (1963~) and Murray (1965~) derived continuity and momentum 
equations for fluidized beds based on a contiiiuum approach. Their complete 
equations differ, but both authors made simplifying assumptions for gas-fluidized 
systems (Jackson 1963b; Murray 1965 b) which make the resulting equations 
identical, despite different notations which tends to obscure this fact, Jackson 
(1963b) attempted a numerical solution and presented the f i s t  iteration. This 
approach requires formidable numerical calculations to reach even the first step 
in the iteration process for an ideal bubble; for this reason Jackson’s theory is not 
treated here. For isolated spherical bubbles Jackson’s solution predicts clouds 
which are very similar to those obtained in closed form by Murray. 

Murray (1965 b) linearized the equations for steady motion in such a way that 
the resulting motion of both gas and particles is irrotational and incompressible, 
The complex potential for the gas is then an explicit function of the complex 
potential for the particles, 

WG = u0 z + wp - CFa(au, + dw,/dZ), (2) 

where CL. = UB/uo, F = ut/ga is a Froude number and a is the bubble radius. 
Murray chose the constant C so that the gas pressure is constant over the front 
of the bubble. In  all three models the gas density is taken to be negligible. This 
assumption leads to the requirement that the gas pressure be constant on the 
surface of the bubble. In  fact Murray’s model satisfies the constant pressure con- 
dition only in the vicinity of the bubble nose, whereas Davidson’s model enables 
the constant pressure condition to be satisfied at  all points on the bubble surface. 

Experimental cloud sizes and shapes have been found to agree more closely 
with the predictions of Murray’s model than with those of Davidson’s (Rowe, 
Partridge & Lyall 1964). On the other hand, Davidson’s model is qualitatively 
correct and mathematically simpler than Murray’s and, as just noted, it gives a 
more realistic distribution of gas pressure. Both models are used in this paper to 
treat indented and elliptical bubbles; for analytical reasons only Murray’s 
model is used for interacting bubbles. 

2. Bubbles with particle wakes 
Real bubbles in fluidized beds adopt a circular-cap or spherical-cap shape with 

an indented base (Rowe & Partridge 1962, 1965). Observations of particle trans- 
port (Rowe & Partridge 1962; Rowe, Partridge, Cheney, Henwood & Lyalll965) 
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and bubble coalescence (Clift & Grace 1970, 1971b) show that a bubble and its 
wake may be represented by a circular or spherical cap empty of particles with a 
wake of particles completing the circle or sphere and travelling with the bubble. 
In  order to describe particle and fluid motion around a two-dimensional bubble 
we have adopted a procedure suggested by Stewart (1968). Particles are assumed 
to flow around the complete circle enclosing the bubble and its wake. For Murray’s 
model the gas flow follows directly from (2). For Davidson’s model the description 
of the gas flow is completed by inserting the condition that the gas pressure is 
constant on the surface of an indented kidney-shaped bubble obtained by con- 
formal transformation of the equations for a circular bubble.? The approach gives 
a constant gas pressure boundary and a closed solids streamline which are 
different; this difference distinguishes our treatment from the analysis of a 
deformed bubble given by Collins 1(1965). However the pressure field for our 
indented bubble is identical to that associated with the analysis of Collins since 
wco is common to the two approaches. Stewart (1968) has shown that this pres- 
sure field is in excellent agreement, even in the wake region, with measurements 
obtained by Reuter (1963). 

If the vorticity of solids is largely confined to the wake region and if the voidage 
is substantially constant throughout the dense phase, then the particle motion 
outside the bubble and its wake may be described by the equations of potential 
flow.$ With co-ordinates fixed on the bubble, the boundary conditions are as 
follows: (i) uniform velocity -U, at infinity; (ii) no flow across the circular 
boundary containing the bubble and its wake. If the centre of curvature of the 
bubble is at zo on the real (vertical) axis of the complex plane z = 2 + i y ,  the 
complex potential is given by 

wp = - uo .((Z - xo) + a”(z - z,)}. (3) 

To obtain the complex potential for the gas motion according to Davidson’s 
model it is first necessary to describe the fluid motion for a stationary void. The 
boundary conditions are as follows : (i) constant interstitial velocity uo at infinity, 
(ii) constant pressure (and hence constant velocity potential at  the kidney- 
shaped bubble boundary. Collins (1965) showed that the solution could be 
obtained using a particular form of the Joukowski transformation 

2 = t - q t .  (4) 

Under this transformation, the circle of unit radius centred at  d on the real axis 
of the t plane, 

is mapped into a kidney-shaped bubble in the x plane. The transformed bubble 

t This simple approach may be contrasted with Murray’s (19656) analysis of a bubble 
with a steady cusped free-streamline wake. The complexity of Murray’s analysis renders it 
more cumbersome, and the physical model is no more realistic. 

$ The assumption that vorticity is confined within the circular boundary containing 
the bubble and its wake is consistent with Parlange’s (1969) analysis of spherical-cap 
bubbles in liquids with closed laminar wakes. Voidage increases adjacent to rising bubbles 
have been found by Lockett & Harrison (1967) but these increases are very small and are 
$herefore ignored in the present treatment. 

t = d + e V ,  ( 5 )  
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boundary is a good approximation to the shape of a real kidney-shaped bubble if 
k + d = 1. The complex potential which satisfies the above boundary conditions is 

wG0 = @O[(Z - 2d + (z2 + 4k2)4) - 4/{Z - 2d + (z2 + 4k2)*)]. (6) 

The complex potential for gas motion around the moving bubble now follows 
from (1). The imaginary part of wG gives the gas stream function 

I1 ~ ,=uo[T( l+- ) -uy( l -  Y 4 a2 
x2+ Y2 (x - X J 2  + y2 ' 

where 

and 

For each value of k, a and xo are the radius of curvature and centre of curva- 
ture, respectively, of the upper part of the transformed bubble. Table 1 shows 
the values of a and xo for three values of k, determined in each case by fitting the 

X = x + q cos 6- 2 4  Y = y + q sin 6, q4 = (x2  - y2 + 4k2)2 + 4x2y2 

tan 26 = 2xy/(x2 - y2 + 4k2). 

Transformation constant (k) 0.286 0.35 0.40 
Radius of curvature (a) 1.0561 1.0917 1.1287 
Centre of curvature (q,) 0.6106 0.4841 0.3713 
Bubble area (Ab)  3.05 3.007 2.955 
Shape characteristic (@/At )  0-605 0.63 0-656 
Included angle (approx.) 278' 267' 247" 

TABLE 1. Characteristics of transformed bubble 

circle through the points corresponding to /3 = 0 and /3 = kin. The cloud 
boundary is obtained from (7 )  as the closed branch of the streamline $G = 0, i.e. 

I 4 a2 
(x - xo)2+ y2 ' 

Results are presented here for k = 0.35 and 0-40 as well as for k = 0.286, the value 
employed by Collins. The corresponding bubble shapes can be characterized 
(as shown in table 1) by the values of the included angle of the circular cap and by 
the ratio a/Ai ,  where A,  is the bubble area, and correspond to different apparent 
dense-phase viscosities (Grace 1970). 

For Murray's model the complex potential for the fluid motion outside the 
circular boundary containing the bubble and wake follows directly from ( 2 )  and 
(3), i.e. 

Equations ( 2 )  and (3) are independent of the processes occurring inside the 
boundary so (9) applies whether a wake is contained within the circular boundary 
or not. Application of the constant pressure condition in the vicinity of the bubble 
nose yields (Murray 1965b) CF = 11401~. 

Substituting this relationship into (9) we obtain 

w, = uo z -  4(z-xo)2] -u ,[( 2 - x o ) + -  2-xo u2 1. [ 
a3 
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When (11) is rewritten in polar co-ordinates with origin at  the centre of curvature 
of the bubble the imaginary part of the resulting equation gives 

The cloud boundary can now be obtained from (12) as the closed branch of the 
streamline @G = 0,  given by 

(13) cos 8 + (2r/a) [( 1 - a)r2/a2 +a] = 0. 

t 

FIGURE 1. Cloud boundaries for indented two-dimensional bubbles as predicted using 
Davidson and Murray theories. - - - -, bubble with wake; -, circular bubble. 

the 

Figure 1 shows cloud boundaries for the bubble shape corresponding to 
k: = 0.35 and three values of a calculated for the Davidson and Murray models 
from (8) and (13). For the Davidson model the cloud boundaries for the circular 
bubble with the same radius a and dimensionless velocity a are plotted for 
comparison. It is clear that the indentation at  the rear of a bubble has very little 
effect on the leading boundary of the cloud, but our analysis shows that the 
boundary of the cloud is displaced upwards at  the rear. As a result, the centroid of 
the cloud is pushed forward slightly; this is in agreement both with the cloud 
for the Murray model and with experiment. As noted above, application of the 
Murray model to the deformed bubble results in a cloud boundary which is 
identical to the cloud boundary predicted for an undeformed bubble. 
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Figure 2 shows values of AJA, plotted as a function of cy. for the two models 
and three bubble shapes, where A,  is the cloud area for an indented bubble, the 
wake being included within the cloud, and ACo is the cloud area for the circular 
bubble with the same area and the same value of a. The ratio diverges significantly 
from unity, especially for large a when the cloud region is relatively thin so 
that the wake region is the major contribution to A,. Both models predict that 

I I I I  I 

1 2 4 6 8 10 

cc 

0 

FIGURE 2.  Ratio of cloud area for indented bubbles to cloud area for undeformed bubbles as 
a function of cc. -, k = 0.286; - - - -, k = 0.35; - - - -, k = 0.40. 

cloud areas calculated on the assumption that a bubble is circular and wakeless 
can be greatly in error, especially in the small particle high a systems which 
are of the greatest practical importance. In  chemical reactor modelling, some 
authors (e.g. Rowe 1964; Kunii & Levenspiel 1969; Pyle & Rose 1965) have 
allowed for the wake by assuming the cloud boundary to be identical to that 
predicted for perfectly spherical bubbles, and by adding a wake fraction to 
be included within the bubble. Our analysis shows that this approximation is 
justified for the Murray model but that it is not strictly correct for the Davidson 
approach. 

3. Elliptical bubbles 
Bubbles undergo frequent deformations in freely bubbling fluidized beds, 

especially during the process of splitting and coalescence. While an elliptical 
shape does not model the contour of elongated or flattened bubbles perfectly, 
this shape allows us to predict qualitatively the effect of deformation on cloud 
boundaries. Elliptical cylinders with their major axes aligned vertically approxi- 
mate the shape of bubbles enclosing vertical rods or tubes (Grace & Harrison 
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1968). It was shown in the previous section that the presence of a wake influences 
the cloud boundary to a limited extent only; the bubbles in this section are 
therefore assumed to be perfectly elliptical with no wake indentations. 

The bubble is assumed to be elliptical with vertical semi-axis a and horizontal 
semi-axis b. The focal distance is c, where 

c2 = az-bz. (14) 

The bubble eccentricity is e = c/a and the ratio b/a is denoted by T .  Thus 

e2 = 1 - T ~ .  (15) 

Defining the complex variable 

where t; and 7 are elliptical co-ordinates, and using the transformation 

5 = E+iq, 

z = c cosh 6 = c(cosh E cos 7 + i sinh sin 7) 

a = c Gosh Eo, T = tanh to, we may write b = c sinh Eo, 

where [,, is the constant value of which defines the boundary of the elliptical 
bubble. 

The particle complex potential describing potential flow past this elliptical 
boundary, with a uniform velocity - U, at infinity, is given (Milne-Thomson 
1962; Grace & Harrison 1967) by 

wp = - U, a( 1 + T )  cosh (5- Eo). (16) 

The imaginary part of (16) gives the particle stream function 

$p = - U, a( 1 + T )  sinh (6 - Eo) sin 7. (17) 

For Davidson’s model the stream function for the gas motion is obtained from 
the imaginary part of (l), i.e. 

$G = $P f @Go? (18) 

where +@, is the stream function for percolation of gas through a stationary void. 
This is given (Grace & Harrison 1969) by 

$Go = u , a ( l + ~ ) c o s h ( ~ - 6 ~ ) s i n ~ .  119) 

(20) 

Combining (17), (18) and (19) we obtain 

$G = (uoa( 1 +T)/e) [( 1  fa^) cosh 6 - (a +T)  sinh (1 sin 7. 

As before, the cloud boundary is the closed branch of the streamline $@ = 0, 

tanhc = ( l + a ~ ) / ( a - ~ )  (a > 1). (21) 

Equation (21) defines an elliptical cloud boundary with the same centre and focal 
length as the bubble. Cloud boundaries for T = 0.80 and T = 0.60 are shown in 
figure 3. For reference purposes, the clouds for the corresponding circular bubble 

F L M  15 I 3  
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of the same area and the same a are also plotted. Clouds for elongated bubbles 
have a lower eccentricity than the bubbles with which they are associated. More 
important, they are somewhat larger in area than for the corresponding circular 
bubbles.? From geometrical considerations it can be shown that the ratio of the 
major axis o f  the elliptical cloud a, to that of the bubble is given by 

a,/a = (a + 7)/(a2 - 1)k 

Similarly the minor axis of the cloud b, is such that 

b,/b = (a + l / ~ ) / ( d  - 1)&. 

7 = 0.80 T = 0.60 

I 
FIGURE 3. Cloud boundaries for elliptical bubbles: Davidson theory. -, cloud boundary for 
elliptical bubble ; VTA, elliptical bubble boundary ; - - - , boundary of corresponding 
circular bubble; - - - - - -, cloud boundary for circular bubble. 

Hence the ratio of the cloud area to  the bubble area, an important ratio in 
determining the effectiveness of gas-solid contact, is givenlby 

A,/A, = (2 + 4 7  + 1/7)}/(a2 - 1) .  ( 2 2 )  

Values of AJA, calculated from (22) are presented for four bubble shapes and 
three values of a in table 2. 

The use of (19) in Davidson's model automatically satisfies the condition that 
the gas pressure be constant at  the bubble surface. For Murray's model it is 
necessary to evaluate CF in order to make the pressure constant at  the bubble 
nose. This in turn requires (Murray 19658) that 

Re {uoz - CFaa(auo +dw,/dz)} = constant for E = E,, as 7 + 0. 

t The clouds predicted by Davidson's model for the corresponding flattened bubbles, 
7 = 1-25 and 1.67, are simply obtained by rotating figure 3 through 90". 
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The above condition is satisfied to terms of order r3 when 

1 

It is helpful to rewrite (16) as 

wp = - u,a(z + (a2/c) 7( 1 + r )  (cosh t - sinh 6)). (16a) 
Now for Murray’s model the complex potential for the gas motion follows from 
(2)’ (16a) and (23). The imaginary part of the resulting expression gives the gas 
stream function, 

ar(1 + r )  
e(cosh t + sinh 6) 

cosr } (24) 
r3 +- X 
2e2 sinh2[+sin2T * 

( a )  Davidson model tl = 10.0 a = 3.33 
Circular bubble k = 0 ; 7 =  1 0.222 0.857 

Indented bubbles k = 0.286 0.377 1.014 
k = 0.35 0.482 1.129 
k = 0.40 0.595 1.320 

Elliptical bubbles T = 0.875 0.224 0.863 
T = 0.75 0.231 0.885 
T = 0.625 0,245 0.931 
T = 0.50 0.273 1.022 

Circular bubble k = O ; T =  1 0.110 0.422 

Indented bubbles k = 0.286 0.277 0.636 
k = 0.35 0.382 0.770 
k = 0.40 0.505 0.928 

Elliptical bubbles T = 0.875 0.104 0.398 
T = 0.75 0.098 0.377 
7 = 0.625 0.094 0.359 
T = 0.50 0.091 0.347 

TABLE 2. Ratio (A,/&) of cloud area to bubble area 
for circular and deformed bubbles 

( 6 )  Murray model 

u = 1-67 
3.000 

3.257 
3.461 
3.758 

3.017 
3.078 
3.211 
3.469 

1.476 

1.849 
2.084 
2.358 

1.390 
1.310 
1.239 
1.181 

The cloud boundary is the closed branch of the $hG = 0 streamline? 

(25) 
r3 cos ’I +- X = 0. 

ar(1 + r )  
(1 -a)esinht+ 

e(cosh[+sinhg) 2e2 sinh2 [+sin2T 

Cloud boundaries obtained from (25) are shown in figure 4 for 7 = 0-80 and 
r = 0.60 and for the values of a which have been employed in table 2 and figures 
1 and 3. It is clear that the clouds predicted by Murray’s model are roughly 
elliptical in shape but displaced forward somewhat, so that the centroid of the 
cloud area lies above the bubble centre as for undeformed bubbles. The clouds for 

t It may be noted that the bubble boundary becomes circular as T -+ 1. In  this limit 
e sinh 5 -+ r ,  e -+ 0, sinh 6 + cosh 5 -+ co, 7 -+ 0 and it can readily be shown that (22), (23) 
and (25) reduce to the corresponding expressions obtained by Davidson and Murray for 
undeformed bubbles. 

13-2 
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elongated bubbles are smaller than €or the corresponding circular bubble of the 
same area rising at  the same dimensionless velocity a. 

Cloud areas have been calculated by numerical integration and some values of 
AJA,  are given in table 2 .  Figure 5 shows how the cloud area changes as a bubble 

3.33 

FIGURE 4. Cloud boundaries for elliptical bubbles : Murray theory. 
Notation as in figure 3. 

I I I I I I 
1 2 4 6 10 30 

cc 

FIGURE 5. Ratio of cloud area for elliptical bubbles to cloud area for undeformed bubbles as 
a function of a. - - -, r = 0.875; -, T = 0.75; - - -, r = 0.625; - - - - - -, r = 0.50. 
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becomes elongated while retaining the same value of a. It can be seen that 
the cloud is always larger than for the corresponding circular bubble for the 
Davidson model and smaller for Murray’s model. Because the cloud area 
A ,  for circular bubbles is already about twice as large for Davidson’s model 
than for Murray’s, bubble elongation tends to accentuate the discrepancy 
between the cloud areas and between the degree of gas-solid contact predicted 
by the two models. 

4. Interacting bubbles in vertical alignment 
In  freely bubbling fluidized beds bubbles are constantly in the process of 

coalescing and splitting, so that interactions between bubbles are of great 
importance. In  order to illustrate the effect of bubble interaction on gas-solid 
contacting we consider the flow around a pair of bubbles. For simplicity, wake 
effects and higher order bubble interactions are neglected. 

Except under special circumstances the velocities of neighbouring bubbles are 
not identical, so that the flow is unsteady with respect to any set of axes and the 
basic equations for steady motion of gas and particles no longer apply. However, 
for a pair of bubbles of unequal size rising in a vertical line there is one particular 
spacing at  which the relative velocity vanishes. The present analysis is limited to 
this particular case. The spacing between the bubbles is calculated from the inter- 
action theory of Clift & Grace (1970, 1971 b ) ;  a parallel but more complex theory 
due to Lin (1970) gives almost identical values (Clift & Grace 1971 a) .  The pro- 
cedure of choosing a particular situation in which bubbles interact but the 
motion is steady has also been employed by Gabor (1969) and Gabor & Koppel 
(1970) in analyses of gas and particle motion around an infinite vertical chain of 
equal-sized equally spaced bubbles. 

The problem of solving Murray’s equations for particle motion is to find a 
complex velocity potential which satisfies the boundary conditions of (i) uniform 
velocity -U, remote from the bubbles, (ii) no particle flow across the bubble 
boundaries. The representation of two exactly circular bubbles requires an infinite 
series of doubletsfor each bubble. Interacting bubbles are not completely circular ; 
therefore the particle stream functions are kept to  simple forms which satisfy 
the second boundary condition on closed surfaces which are approximately, 
but not exactly, circular. With Murray’s model this also ensures that the gas 
stream function is relatively simple. On the other hand, the corresponding simple 
gas stream function for Davidson’s model turns out to satisfy the constant 
pressure condition on a boundary which is slightly different from the boundary 
for the particle motion (Collins 1965; Gabor 1969). For this reason Davidson’s 
method of analysis has not been pursued for interacting bubbles. 

Each bubble is represented by a single doublet in the complex potential for the 
particle motion. If the doublets are situated at (0,O) and (xz, 0) in the z plane the 
particle complex potential relative to the bubbles is given by 
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where a, and a2 are the radii of the circular boundaries which each bubble would 
have in the absence of the other bubble.? It follows that the particle stream 

1 
function is 

T 

t--- 
FIGURE 6. Cloud boundaries and gas streamlines for interacting bubbles in vertical 

alignment. (a)  s = 0-5, zz/al = -2.306. (6) s = 0.7, zz/a,  = -3.031. 

where s = a2/a,. The bubble boundaries are defined by the closed branch of the 
streamline ykP = 0; i.e. 

(28) 
1 S2 ] = 1 .  

a; [w + (x - x2)2 + y2 
These boundaries are plotted in figure 6 ( a )  for s = 0.5, x2/a, = -2.306 and in 
figure 6 ( b )  for s = 0.7, x2/al = - 3.031, where the values of x2 are chosen so that 
the bubbles have zero relative velocity. Figure 6 shows that the resulting bubble 
shapes are distorted in qualitatively the same manner as real interacting bubbles, 
although in practice rather more distortion is observed, especially for the rear 
bubble (Clift & Grace 1970). 

t The bubble areas described by this model are somewhat greater than the areas 
described by doublets of the same strength remote from each other. For figure 6(a )  the 
increase is 7 yo for the leading bubble and 27 yo for the rear bubble, while for figure 6 (6) the 
increases are, respectively, 7 yo and 14%. Because bubbles in fluidized beds do tend to 
grow during the coalescence process, and because the model itself is only approximate, 
no correction to the doublet strengths has been made to offset this growth. 
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The complex potential for the gas motion around the interacting bubbles 
follows from (2) and (26): 

w, = uox-uB ( z+-+- z ~ X B ) - c F u l a ( ~ + -  22 (x-x2)2 I - 
The value of the linearization constant C for interacting bubbles without relative 
velocity is expected to be only a few per cent different from the value for a 

Area ratio 
Leading bubble 
Rear bubble 
Overall 

Uncorrectedt 
Leading bubblef 
Rear bubblef 
Overall$ 

Values for isolated bubbles 

a =  10 

0.129 
0.165 
0.137 

0.110 
0.115 
0.171 
0.128 

(4 

a =  10 

Leading bubble 0-131 
Rear bubble 0.133 
Overall 0.132 

Area ratio 

Values for isolated bubbles 
Uncorrectedt 0.110 
Leading bubblef 0-116 
Rear bubble$ 0- 142 
Overall$. 0.125 

(b)  

a = 3.333 

- 
- 

0.565 

0.422 
0.451 
0.780 
0.526 

a = 3.333 

0.496 
0.531 
0.508 

0.422 
0.455 
0.597 
0.505 

u = 1.667 

- 
- 

1.66 

1.48 
1.62 
6.62 
2.76 

u = 1.667 

- 
- 

1.86 

1.48 
1.65 
2.87 
2.06 

TABLE 3. Predicted cloud areas for interacting bubbles in vertical alignment. Values for 
ratio of cloud area to bubble area: (a) s = 0.5, z2 = -2.306, (b )  8 = 0.7, x2 = -3.031 

t ‘Uncorrected’ values refer to isolated bubbles with the same a as interacting bubbles. 
f These are ‘corrected’ values which refer to isolated bubbles with lower values of a, 

allowing for effect of interaction on bubble velocity. 

corresponding isolated bubble (Clift & Grace 1971 a), so that (10) may be used to 
eliminate CB’ from (29). The imaginary part of the resulting equation yields 

The cloud boundary is defined by the closed branch of the streamline $G = 0, 
which follows from (30) as 
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The resulting cloud boundaries are shown in figure 6 for three values of a. It is 
clear that even for a = 10 the interaction between the two bubbles changes the 
cloud boundaries, causing each cloud to extend in the direction of the other. 
When a is sufficiently small the cloud boundaries combine so that a single cloud 
envelops both bubbles. Some gas streamlines within this joint cloud are also shown 
in figure 6 and are calculated from (30) for a = 1.667. An interchange of gas 
between the two bubbles from the lower to the upper bubble near the line of 
centres and in the reverse direction near the cloud boundary is predicted.? 

The effect of interaction on cloud area is shown in table 3, where values are 
listed for the ratio of the cloud area to the bubble area. The values are 12 yo to 
34 % higher than the corresponding ratio for an isolated bubble with the same 
dimensionless velocity a. A more valid comparison is with isolated bubbles at 
lower a-values, since the effect of interaction is to increase the bubble velocity. 
This correction was applied using the theory of Clift & Grace (l970,1971b), and 
the resulting values for the area ratio are also shown in table 3. For the larger 
values of a! the predicted effect of interaction is still to increase the cloud area, 
the growth being at most 7.5 %. For a = 1.667 the predicted effect is a decrease 
in the cloud area of 40 yo for s = 0.5 and 10 yo for s = 0.7, this decrease being due 
t o  the rear bubble, which would have a close to unity and therefore a very large 
cloud, when in isolation. 

5. Interacting bubbles in oblique alignment 
Shichi, Mori & Muchi (1968) presented an analysis of gas and particle motion 

around two equal-sized bubbles which are not in vertical alignment, but which 
rise vertically without relative velocity. In  actual fact, such bubbles would 
experience a small relative velocity (Clift & Grace 1971b). In  this respect the 
treatment presented here is oversimplified but it is included in order to correct a 
misconception arising from the earlier work of Shichi et al. 

Each bubble is represented by a single doublet in the particle equations as in 
the previous section. If the second doublet is located at x ,  = x, + iy, in the z plane 
and the bubbles are of equal size, then (26) and (27) are replaced by 

Figure 7 shows the resulting particle streamlines for y2 = - x2 = 2-5 .  This model 
does not describe closed bubble boundaries but Shichi et al. arbitrarily chose the 
circles centred on the doublets passing through the stagnation points as bubble 
boundaries. However, there is particle flow across these surfaces and this violates 
the second boundary condition for particle motion. 

t This exchange from one bubble to another leads to an explanation of the leakage of 
gas between adjacent bubbles observed by Rowe, Partridge & Lyall (1964) and Rowe & 
Partridge (1965). 



Motion  around deformed and interacting bubbles 201 

To obtain a better representation further terms must be added t o  (32) and (33). 
Higher image doublets might be added, but for equal-sized bubbles it is simpler 
to add terms representing a circulation F a t  the position of each doublet 
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FIGURE 7. Particle and gas streamlines for bubbles in oblique alignment according to 
Shichi, Mori & Muchi (1968). Bubbles centred at (0, 0) and ( - 2 . 5 ,  2 .5);  I? = 0 ;  a = 3-33; 
__-_  , gas streamlines ; -, particle streamlines. 

Equations (34) and (35) still satisfy the boundary condition remote from the 
bubble, and if the value of I’ is chosen to bring the two particle stagnation points 
for each bubble onto the same particle streamline, the bubble boundary is 
closed and the second boundary condition is also satisfied. Figure 8 shows particle 
streamlines defined by (35) for y2 = -x2 = 2-5 and r = - 0.41251. The resulting 
bubble boundaries are seen to be closed and almost circular. 
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The complex potential for the gas motion is obtained from (2) and (34), where 
CP is again approximated by its value for an isolated bubble. On taking the 
imaginary part of the resulting expression, we may write 

The stream function used by Shichi, Mori & Muchi does not include the cir- 
culation term, and the resulting gas streamlines are plotted in figure 7 for 
y2 = -x2 = 2.5 and a = 3.333. There is no cloud boundary in the usual sense 
and the streamlines show flow of gas through the bubbles. For smaller separa- 
tions, gas flows through both bubbles in series. 

2 

1 

0 

-1 

t 
H 

-2 

-3 

-4 

-5  

+?/ 
FIGURE 8. Particle and gas streamlines for bubbles in oblique alignment. Bubbles centred at  
(0, 0) and ( -2.5,  2 .5 ) ;  I? = -0.41251; a! = 3.33; - - - , gas streamlines; -, particle 
streamlines. 

Figure 8 shows gas streamlines plotted with I? chosen to close the particle 
streamlines. It is clear that closing the bubble boundaries also closes the gas 
streamlines, and normal cloud boundaries result. Thus the degeneracy of bubble 
clouds predicted by Shichi et al. (1968) results from failure to have closed particle 
streamlines; our analysis shows that clouds do exist for steady flows even when 
bubbles interact. 
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The cloud boundaries for two bubble separations and for three values of a are 
plotted in figures 9 and 10. For a = 1.667 the gas streamlines did not quite close 
for either case. However, the flow of gas through the region shown as the cloud 
was in each case less than 1 % of the gas flow across a horizontal section of width 
x2 remote from the bubbles. Such a small flow almost certainly results from 
approximations in the solution and closed cloud boundaries have therefore been 
drawn. The clouds only distort significantly from the shapes associated with 
isolated bubbles at  01 = 1.667, the lowest value of a employed. Two bubbles are 
enclosed by a, single cloud for yz = -xz = 2.5 as shown in figure 10 and gas then 
flows between the bubbles as in figure 6. 

6. Concluding remarks 
The study of interacting bubbles presented in the last two sections has been 

limited to cases where there is no relative motion between two bubbles; when 
relative motion exists, the analysis becomes more complex. Toei, Matsuno, 
Nishitani, Hayashi & Imamoto (1969) applied Murray’s equations to a pair of 
coalescing bubbles and predicted cloud boundaries which differ considerably 
from those presented in this paper and in the analyses of Gabor (1969), Gabor & 
Koppel (1970) and Shichi et al. (1968). However, the analysis of Toei et al. uses 
equations of steady gas and particle motion to describe an unsteady flow and, 
moreover, the meaning of clouds for unsteady situations must be considered 
carefully. For steady flows, streamlines and pathlines are identical so that a 
cloud boundary defines the limiting pathline for gas elements which spend some 
of their time in bubbles. For unsteady flows, it is possible to locate instantaneous 
closed gas streamlines when the bubble velocity exceeds u,, but these streamlines 
do not define gas pathlines and therefore should not be regarded as cloud boun- 
daries. 

Experimental measurements obtained by Toei et al. in the same study indicate 
that a large increase in gas-solid contacting accompanies bubble coalescence in 
fluidized beds. Part of this increase is accounted for by the interaction effects dis- 
cussed in the previous sections but a full account of this phenomenon awaits an 
analysis based on the equations of unsteady motion. 
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